A Quantum-Powered Photorealistic Rendering
Published in arXiv, 2023
Achieving photorealistic rendering of real-world scenes poses a significant challenge with diverse applications, including mixed reality and virtual reality. Neural networks, extensively explored in solving differential equations, have previously been introduced as implicit representations for photorealistic rendering. However, achieving realism through traditional computing methods is arduous due to the time-consuming optical ray tracing, as it necessitates extensive numerical integration of color, transparency, and opacity values for each sampling point during the rendering process. In this paper, we introduce Quantum Radiance Fields (QRF), which incorporate quantum circuits, quantum activation functions, and quantum volume rendering to represent scenes implicitly. Our results demonstrate that QRF effectively confronts the computational challenges associated with extensive numerical integration by harnessing the parallelism capabilities of quantum computing. Furthermore, current neural networks struggle with capturing fine signal details and accurately modeling high-frequency information and higher-order derivatives. Quantum computing's higher order of nonlinearity provides a distinct advantage in this context. Consequently, QRF leverages two key strengths of quantum computing: highly non-linear processing and extensive parallelism, making it a potent tool for achieving photorealistic rendering of real-world scenes.
Recommended citation: Yuan-Fu Yang and Min Sun, "QRF: Implicit Neural Representations with Quantum Radiance Fields", arXiv:2211.03418, Nov. 2023. https://arxiv.org/abs/2211.03418